O Level MathematicsE1.7 Indices II (rational and fractional indices).

⚡️ Fractional Powers Unleashed! Mastering Rational Indices

Edudent Academy
1 Dec 25

Indices don’t stop at whole numbers! Understanding **rational and fractional indices** lets you simplify roots, solve exponential equations and tackle surds with confidence. Mastery of this topic is a high-yield skill for O-Level exams because it threads into algebra, coordinate geometry, and even logarithms.

Essential Rules for Rational & Fractional Indices

  • For any positive aa: amn=amn=(an)ma^{\frac{m}{n}} = \sqrt[n]{a^{\,m}} = \bigl(\sqrt[n]{a}\bigr)^{m}.
  • Negative powers flip the base: amn=1amna^{-\frac{m}{n}} = \dfrac{1}{a^{\frac{m}{n}}}.
  • **Add** powers when bases match: ap×aq=ap+qa^{p}\times a^{q}=a^{p+q} (works for fractions too).
  • **Multiply** powers when the same exponent is on different bases: arbr=(ab)ra^{r}b^{r}=(ab)^{r}.

Worked Example: Simplify 272/327^{2/3} and 163/416^{-3/4}

Problem: Simplify 272327^{\frac{2}{3}} and 163416^{-\frac{3}{4}}. Step 1 – Rewrite the first expression using roots: 2723=(273)227^{\frac{2}{3}} = \bigl(\sqrt[3]{27}\bigr)^{2}. Step 2 – Evaluate the cube root: 273=3\sqrt[3]{27}=3, so the expression becomes 32=93^{2}=9. Step 3 – Apply the negative power rule on the second expression: 1634=1163416^{-\frac{3}{4}} = \dfrac{1}{16^{\frac{3}{4}}}. Step 4 – Convert to a root: 1634=(164)316^{\frac{3}{4}} = \bigl(\sqrt[4]{16}\bigr)^{3}. Step 5 – Evaluate the fourth root: 164=2\sqrt[4]{16}=2, hence 23=82^{3}=8. Step 6 – Combine: 1634=1816^{-\frac{3}{4}} = \dfrac{1}{8}. Therefore, 2723=927^{\frac{2}{3}} = 9 and 1634=1816^{-\frac{3}{4}} = \dfrac{1}{8}. Keep practising similar problems to lock in these rules and speed up your exam performance!