O Level MathematicsE2.2 Algebraic manipulation (factorising quadratics, algebraic fractions, change of subject).

πŸ”’ Crack the Code of Algebraic Manipulation!

Edudent Academy
12 Dec 25

Algebra is the language of patterns and logical thinking. Mastering it lets you **simplify complex expressions**, solve equations with ease, and secure those crucial marks in the O Level Extended paper. In this post we’ll zoom into factorising quadratics, tidying up algebraic fractions, and changing the subjectβ€”three super-powers every student needs.

Worked Example: Factorising & Rearranging

Problem: Given
2x2+5xβˆ’3x2βˆ’9=k\displaystyle \frac{2x^2+5x-3}{x^2-9} = k
, (i) factorise the numerator and denominator, (ii) simplify the fraction, and (iii) make
xx
the subject in terms of
kk
.

  • Step 1: Factorise the numerator:
    2x2+5xβˆ’3=(2xβˆ’1)(x+3)2x^2 + 5x - 3 = (2x - 1)(x + 3)
    .
  • Step 2: Factorise the denominator:
    x2βˆ’9=(xβˆ’3)(x+3)x^2 - 9 = (x - 3)(x + 3)
    .
  • Step 3: Cancel common factor
    (x+3)(x + 3)
    to get
    2xβˆ’1xβˆ’3=k\displaystyle \frac{2x - 1}{x - 3} = k
    .
  • Step 4: Change the subject. Cross-multiply:
    2xβˆ’1=k(xβˆ’3)2x - 1 = k(x - 3)
    .
  • Step 5: Expand and collect like terms:
    2xβˆ’1=kxβˆ’3kβ€…β€Šβ‡’β€…β€Š2xβˆ’kx=βˆ’3k+12x - 1 = kx - 3k \;\Rightarrow\; 2x - kx = -3k + 1
    .
  • Step 6: Factor out
    xx
    and divide:
    x(2βˆ’k)=1βˆ’3kβ€…β€Šβ‡’β€…β€Šx=1βˆ’3k2βˆ’kx(2 - k) = 1 - 3k \;\Rightarrow\; \boxed{\displaystyle x = \frac{1 - 3k}{2 - k}}
    .

Notice how careful factorisation simplifies the fraction before any rearrangementβ€”saving time and minimising errors. **Practise** these steps with different quadratics and parameter values so you can glide through exam questions with confidence!