O Level MathematicsC2.4 Indices II (application of index rules to algebraic terms).

๐Ÿ”ข Power Up Your Algebra: Conquer Indices II!

Edudent Academy
14 Dec 25

Indices (also called powers) let us write repeated multiplication compactly. **Mastering index laws** is vital for simplifying algebraic expressions quickly, a skill that O-Level exam questions love to test.

Key Index Laws Refresher

Remember these **golden rules** for any base aโ‰ 0a \neq 0:

  • Product rule: amโ€‰an=am+na^{m}\,a^{n}=a^{m+n}
  • Quotient rule: aman=amโˆ’n\dfrac{a^{m}}{a^{n}}=a^{m-n}
  • Power of a power: (am)n=amn(a^{m})^{n}=a^{mn}
  • Negative index: aโˆ’m=1ama^{-m}=\dfrac{1}{a^{m}}
  • Zero index: a0=1a^{0}=1

Worked Example: Simplifying Algebraic Indices

Problem: Simplify (3a2bโˆ’1)3รท9aโˆ’1b5(3a^{2}b^{-1})^{3} \div 9a^{-1}b^{5}.

  • Step 1: Expand the power (3a2bโˆ’1)3=33a2ร—3bโˆ’1ร—3=27a6bโˆ’3(3a^{2}b^{-1})^{3} = 3^{3} a^{2\times3} b^{-1\times3} = 27a^{6}b^{-3}
  • Step 2: Write the full expression as a fraction: 27a6bโˆ’39aโˆ’1b5\dfrac{27a^{6}b^{-3}}{9a^{-1}b^{5}}
  • Step 3: Simplify constants: 27รท9=327\div9=3
  • Step 4: Apply quotient rule to aa terms: a6/aโˆ’1=a6โˆ’(โˆ’1)=a7a^{6}/a^{-1}=a^{6-(-1)}=a^{7}
  • Step 5: Apply quotient rule to bb terms: bโˆ’3/b5=bโˆ’3โˆ’5=bโˆ’8b^{-3}/b^{5}=b^{-3-5}=b^{-8}
  • Final answer: 3a7bโˆ’8=3a7b83a^{7}b^{-8}=\dfrac{3a^{7}}{b^{8}}

Practice makes perfect! **Challenge yourself** by creating similar problems and timing how fast you can simplify them. The more fluent you are with index laws, the more exam marks you will secure.