O Level MathematicsE5.2 Arc length, sector area, and segment area of a circle.

🎯 Circles in Action: Mastering Arc Length & Sector Areas!

Edudent Academy
13 Jan 26

**Why does this matter?** Every time you measure a slice of pizza or the curved edge of a racetrack, you are meeting *arc length*, *sector area*, and *segment area*. Mastering these circle measures not only boosts your O-Level score but also builds intuition for real-world design, engineering, and science problems!

Key Formulas & Concepts

  • Arc Length (LL) of angle θ\theta (in radians) in a circle of radius rr:
    L=rθL = r\theta
  • Sector Area (AsectorA_{\text{sector}}):
    Asector=12r2θA_{\text{sector}} = \frac{1}{2}r^{2}\theta
  • Segment Area (AsegmentA_{\text{segment}}):
    Asegment=Asector12r2sinθA_{\text{segment}} = A_{\text{sector}} - \frac{1}{2}r^{2}\sin\theta
    (subtract triangle area)
  • Convert degrees to radians:
    θrad=θ°×π180\theta_{\text{rad}} = \theta_{\degree} \times \frac{\pi}{180}

Worked Example: Pizza Slice Geometry

Problem: A circular pizza has radius 14 cm14\text{ cm}. A slice makes a central angle of 4545^{\circ}. Find (i) the arc length, (ii) the sector area, and (iii) the segment area (curved slice minus triangle).

Solution:
1. **Convert angle**:
45=45×π180=π445^{\circ} = 45 \times \frac{\pi}{180} = \frac{\pi}{4} rad.
2. **Arc length**:
L=rθ=14×π4=3.5π11.0 cmL = r\theta = 14 \times \frac{\pi}{4} = 3.5\pi \approx 11.0\text{ cm}

3. **Sector area**:
Asector=12r2θ=12×142×π4=49π154 cm2A_{\text{sector}} = \frac{1}{2}r^{2}\theta = \frac{1}{2}\times 14^{2} \times \frac{\pi}{4} = 49\pi \approx 154\text{ cm}^2

4. **Triangle area** inside the sector:
A=12r2sinθ=12×142×sinπ4=98×22=492 cm2A_{\triangle} = \frac{1}{2}r^{2}\sin\theta = \frac{1}{2}\times 14^{2}\times \sin\frac{\pi}{4} = 98\times\frac{\sqrt{2}}{2} = 49\sqrt{2}\text{ cm}^2

5. **Segment area**:
Asegment=AsectorA=49π49215469.384.7 cm2A_{\text{segment}} = A_{\text{sector}} - A_{\triangle} = 49\pi - 49\sqrt{2} \approx 154 - 69.3 \approx 84.7\text{ cm}^2

**Keep practising!** Draw different sectors, change angles, and verify your calculations. Mastery comes from repetition—and your exam success will follow.