O Level MathematicsE6.4 Trigonometric graphs ($y = a\sin(bx) + c$, $y = a\cos(bx) + c$, $y = a\tan(bx)$).

πŸ“ˆ Ride the Waves! Mastering Trigonometric Graphs

Edudent Academy
20 Jan 26

Trigonometric graphs are everywhereβ€”from modelling sound waves to predicting tides. **Understanding how parameters aa, bb, and cc transform the basic sine, cosine, and tangent curves is essential for O-Level success**, because exam setters love questions that mix algebraic manipulation with graph sketching.

Key Features and Transformations

  • **Amplitude (∣a∣|a|)** – stretches (∣a∣>1|a| > 1) or compresses (0<∣a∣<10 < |a| < 1) the graph vertically and flips it if a<0a<0.
  • **Period** – given by 2Ο€βˆ£b∣\dfrac{2\pi}{|b|} for sin⁑\sin and cos⁑\cos, and Ο€βˆ£b∣\dfrac{\pi}{|b|} for tan⁑\tan. A larger ∣b∣|b| squeezes the graph horizontally.
  • **Vertical shift (cc)** – moves the graph up (c>0c>0) or down (c<0c<0).
  • **Phase shift** – although not in asin⁑(bx)+ca\sin(bx)+c directly, replacing xx with (xβˆ’d)(x-d) slides the graph dd units right.
  • **Asymptotes for y=atan⁑(bx)y=a\tan(bx)** – occur at bx=Ο€2+kΟ€bx = \dfrac{\pi}{2}+k\pi, so they move as bb changes.

Worked Example: Sketching y=2sin⁑3xβˆ’1y = 2\sin 3x - 1

Problem: Sketch one complete cycle of y=2sin⁑3xβˆ’1y = 2\sin 3x - 1 and state its amplitude, period, and vertical shift. Step-by-Step Solution: 1. **Identify parameters**: a=2a = 2, b=3b = 3, c=βˆ’1c = -1. 2. **Amplitude** = ∣a∣=2|a| = 2. 3. **Period** = 2Ο€βˆ£b∣=2Ο€3\dfrac{2\pi}{|b|} = \dfrac{2\pi}{3}. 4. **Vertical shift** = c=βˆ’1c = -1. The mid-line is y=βˆ’1y = -1. 5. **Key points**: β€’ Start at (0,βˆ’1)(0,-1) (since sin⁑0=0\sin 0 = 0). β€’ Quarter period: x=Ο€6x = \dfrac{\pi}{6}, y=βˆ’1+2=1y = -1 + 2 = 1 (peak). β€’ Half period: x=Ο€3x = \dfrac{\pi}{3}, back to mid-line y=βˆ’1y = -1. β€’ Three-quarter period: x=Ο€2x = \dfrac{\pi}{2}, y=βˆ’1βˆ’2=βˆ’3y = -1 - 2 = -3 (trough). β€’ Full period: x=2Ο€3x = \dfrac{2\pi}{3}, return to y=βˆ’1y = -1. 6. **Sketch** the smooth curve through these points, respecting amplitude and mid-line. With practice you will recognise these transformations instantlyβ€”**try altering aa, bb, or cc and see how your sketch changes!**